benchmarks package
Subpackages
Submodules
benchmarks.call_audio_benchmark module
- class benchmarks.call_audio_benchmark.CallAudioBenchmark(model: str = 'base')[source]
Bases:
object
A class for processing call audio and extracting call notes.
- Parameters:
model (str, optional) – The name of the Whisper ASR model to use. Defaults to “base”.
- current_transcript
The most recent transcript obtained from audio processing.
- Type:
str
- transcripts
A list of all transcripts processed.
- Type:
list
- model_transcripts
A dictionary mapping LLAVA models to their respective transcripts.
- Type:
dict
- call_notes
Extracted call notes from benchmark results.
- Type:
str
- model_call_notes
A dictionary mapping LLAVA models to their call notes.
- Type:
dict
- model
The Whisper ASR model instance.
- Type:
whisper.WhisperModel
- media_file_path(media_file
str) -> str: Returns the absolute path to the specified media file.
- process_audio(audio_file
str) -> whisper.Audio: Loads and processes the audio file, returning the padded or trimmed audio.
- transcribe_audio(call_audio
whisper.Audio) -> str: Transcribes the audio using the Whisper model and returns the transcript.
- store_transcript(llava_model
str, fp16: bool = False) -> None: Stores the current transcript along with the LLAVA model it corresponds to.
- store_call_notes(llava_model
str, benchmark_result: str) -> None: Extracts and stores call notes from benchmark results.
Note
This class assumes the existence of the Whisper ASR model and audio data.
- media_file_path(media_file: str)[source]
Returns the absolute path to the specified call audio file.
- Parameters:
media_file (str) – The name of the call audio file.
- Returns:
The absolute call audio file path.
- Return type:
str
- print_call_notes()[source]
Prints formatted call notes.
Note
The call notes are wrapped to a maximum width of 40 characters using textwrap.
- process_audio(audio_file: str)[source]
Loads and processes the audio file, returning the padded or trimmed audio.
- Parameters:
audio_file (str) – The name of the audio file.
- Returns:
Processed audio data.
- Return type:
whisper.Audio
- store_call_notes(llava_model: str, benchmark_result: str)[source]
Extracts and stores call notes from benchmark results.
- Parameters:
llava_model (str) – The LLAVA model name.
benchmark_result (str) – The benchmark result output.
- store_transcript(llava_model: str, fp16: bool = False) None [source]
Stores the current transcript along with the LLAVA model it corresponds to.
- Parameters:
llava_model (str) – The LLAVA model name.
fp16 (bool, optional) – Whether FP16 mode is enabled. Defaults to False.
- transcribe_audio(call_audio: <module 'whisper.audio' from '/opt/hostedtoolcache/Python/3.12.4/x64/lib/python3.12/site-packages/whisper/audio.py'>)[source]
Transcribes the audio using the Whisper model and returns the transcript.
- Parameters:
call_audio (whisper.Audio) – Processed audio data.
- Returns:
The transcribed text.
- Return type:
str
benchmarks.license_plate_benchmark module
- class benchmarks.license_plate_benchmark.LicensePlateBenchmark[source]
Bases:
object
A benchmark class for license plate numbers.
- current_license_plate_number
The current license plate number being processed.
- Type:
str
- license_plate_numbers
List of extracted license plate numbers.
- Type:
list
- model_license_plate_numbers
Mapping of model names to license plate numbers.
- Type:
dict
- extract_license_plate_number(stdout) str [source]
Extract the license plate number from benchmark result output.
- Parameters:
stdout (str) – Benchmark result output.
- Returns:
Extracted license plate number or None if not found.
- Return type:
str
- static media_file_path(media_file: str) str [source]
Get the absolute path to a media file.
- Parameters:
media_file (str) – The name of the media file.
- Returns:
Absolute path to the media file.
- Return type:
str